Recieved Date: 28/08/2014.
Some - WORK

Sub: Mechanical Behavior of Materials.

Topic: To locate the Non Misses Criterion in 3D; with considering principle axises as x, y and z-axis.

Submitted By:
Nitish Bibhanshu PhD
Material Engineering.
Submission Date: 01/09/204.

Q: Principle Stress form of the Von-Mises Criterion

$$
\frac{1}{6}\left[\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}\right] \geqslant k^{2}
$$

with considering σ_{1}, σ_{2}, and σ_{3} as x-axis, y-axis and z-axis respectivelly, generate the curve in ' $3 D$ '.

Solution:
Given equation,

$$
\frac{1}{6}\left[\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}\right] \geqslant k^{2}
$$

Let $\sigma_{1}=x ; \sigma_{2}=y ; \sigma_{3}=z$
than corresponding equation will be in the following form,

$$
\begin{aligned}
& \frac{1}{6}\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]=k^{2} \\
& \therefore(x-y)^{2}+(y-z)^{2}+(z-x)^{2}=6 k^{2} \\
& x^{2}+y^{2}-2 x y+y^{2}+z^{2}-2 y z+z^{2}+x^{2}-2 z x=6 k^{2}
\end{aligned}
$$

or, $\quad 2 x^{2}+2 y^{2}+2 z^{2}-2 x y-2 y z-2 z x=6 k^{2}$

$$
\therefore x^{2}+y^{2}+z^{2}-x y-y z-z x=3 k^{2}
$$

for locating the curve presenting the equation (1), in $3 D$, we will do this in two steps.

1) First we will cheek that the given curve will present of which quardratic curve.
Q1inaill innate the curve in 3D. with
i) Standard form of the quardratic surface,

$$
a x^{2}+b y^{2}+c z^{2}+2 h x y+2 f y z+2 g z x+2 p x+2 q \cdot y+2 x z+d=0
$$

for this curve, two matrix are define, and one equations
corresponding to the rank of the matrices and solution of the equation, define different type of surfaces in 3D.

$$
e=\left[\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right] ; E=\left[\begin{array}{llll}
a & h & g & p \\
h & b & f & q \\
g & f & c & \gamma \\
p & q & \gamma & d
\end{array}\right] \begin{aligned}
& \text { Refer to } \\
& \text { The Elements Of Coordinate } \\
& \text { Geometry by S. L. Loney } \\
& \text { for these steps }
\end{aligned}
$$

and equation is

$$
\left|\begin{array}{ccc}
a-x & h & g \\
h & b-x & f \\
g & f & c-x
\end{array}\right|=0 \text {; roots of this equation }
$$

Now, for equation (1);

$$
2 x^{2}+2 y^{2}+2 z^{2}-2 x y-2 y z-2 z x-6 k^{2}=0 .
$$

comparing this equation with equation (2.), we get

$$
\left.\begin{array}{l|l|l}
a=2 \\
b=2 & 2 h=-2 ; h=-1 & p=0 \\
c=2 & 2 f=-2 ; f=-1 & q=0 \\
2 g=-2 ; g=-1 & r=0
\end{array} \right\rvert\, d=-6 k^{2} .
$$

So,

$$
e=\left[\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right]=\left[\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]
$$

.. rank of $e=2$

$$
E=\left[\begin{array}{llll}
a & h & g & p \\
h & b & f & q \\
g & f & c & r \\
p & q & r & d
\end{array}\right]=\left[\begin{array}{cccc}
2 & -1 & -1 & 0 \\
-1 & 2 & -1 & 0 \\
-1 & -1 & 2 & 0 \\
0 & 0 & 0 & -6 k^{2}
\end{array}\right]
$$

rank of $E=3$
Now, the equation is

$$
\begin{aligned}
& \because\left|\begin{array}{ccc}
a-x & h & g \\
h & b-\lambda & f \\
g & f & c-\lambda
\end{array}\right|=0 \\
& \therefore\left|\begin{array}{ccc}
2-\lambda & -1 & -1 \\
-1 & 2-\lambda & -1 \\
-1 & -1 & 2-\lambda
\end{array}\right|=0 \\
& \Rightarrow(2-\lambda)\left\{(2-\lambda)^{2}-1\right\}-1\{1+2-\lambda\}-1\{1+2-\lambda\}=0 \\
& \Rightarrow(2-\lambda)\left\{4+\lambda^{2}-4 \lambda-1\right\}-1\{3-\lambda\}-1\{3-\lambda\}=0 . \\
& \Rightarrow(2-\lambda)\left(\lambda^{2}-4 \lambda+3\right)-3+\lambda-3+\lambda=0 \\
& \Rightarrow 2 \lambda^{2}-8 \lambda+6-\lambda^{3}+4 \lambda^{2}-3 \lambda-4+2 \lambda=0 \\
& \Rightarrow-\left(\lambda^{3}-6 \lambda^{2}+9 \lambda\right)=0 .
\end{aligned}
$$

as non-zero values of the λ have same sign.
So, rank of $e=2$
rank of $E=3$; and λ values show that the given quardratic surface is cylinder.

$$
[\text { Ref }: \text { inttp://mathworld. wolfram com/Quadratic Surface. }
$$

2) for locating a cylinder in 3D, we need to know the axis equation (a straight line) and the perpend ficular distance from the surface of cylinder to their axis.

Now, he equation of axis is

$$
\frac{x-a}{l}=\frac{y-b}{m}=\frac{z-c}{n}
$$

this line passes through the point (a, b, c) and have direction ratio of ($1, m, n$).

\therefore Direction cosine of the line $=\left(\frac{1}{\sqrt{l^{2}+m^{2}+n^{2}}}, \frac{m}{\sqrt{l^{2}+m^{2}+n^{2}}}, \frac{n}{\sqrt{l^{2}+m^{2}+n^{2}}}\right)$
consider a variable point $A(x, y, z)$ on the cylinder and draw a perpendicular 'AB' on the line of axis.
$O B=$ projection of $O A$ on the line (axis of cylinder)
$A B=$ Perpendicular distance of line and surface of cylinder $=h$ (Let).

$$
\begin{aligned}
& \dot{O} A^{2}=(x-a)^{2}+(y-b)^{2}+(z-c)^{2} \cdot\left\{\begin{array}{l}
\text { by poit-point distance }\} \\
\text { formula }
\end{array}\right\} \\
& O B=\frac{(x-a) l}{\sqrt{l^{2}+m^{2}+n^{2}}}+\frac{(y-b) m}{\sqrt{1^{2}+m^{2}+n^{2}}}+\frac{(z-c) n}{\sqrt{l^{2}+m^{2}+n^{2}}} \\
& O B=\frac{1}{\sqrt{1^{2}+m^{2}+n^{2}}}\{(x-a) l+(y-b) m+(z-c) n\}^{2} \\
& O B^{2}=\frac{1}{l^{2}+m^{2}+n^{2}}\{(x-a) l+(y-b) m+(z-c) n\}^{2}
\end{aligned}
$$

Now, In $_{n} \triangle O A B$;
By pythagorous theorem,

$$
\begin{gathered}
O A^{2}=O B^{2}+A B^{2} \\
\Rightarrow(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=\frac{1}{l^{2}+m^{2}+n^{2}}\{(x-a) l+(y-b) m+(z-c) n\}^{2}+h^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \begin{array}{l}
l^{2}+m^{2}=1 \\
m^{2}+n^{2}=1
\end{array} \quad \text { nnsolving this equation, we get } \\
& l=\frac{1}{\sqrt{2}}, m=\frac{1}{\sqrt{2}}, n=\frac{1}{\sqrt{2}} \\
& n^{2}+l^{2}=1 \\
& 21 m=1 \\
& 2 m n=1 \\
& 2 n l=1 \\
& 2 a\left(m^{2}+m^{2}\right)-2 l m \cdot b-2 n l \cdot c=0 \\
& 2 b\left(l^{2}+m^{2}\right)-21 m \cdot a-2 m r \cdot c=0 \\
& 2 c\left(m^{2}+m^{2}\right)-2 m n \cdot b-2 n l \cdot a=0 \\
& a^{2}\left(m^{2}+n^{2}\right)+b^{2}\left(l^{2}+n^{2}\right)+c^{2}\left(m^{2}+l^{2}\right)-2 l m \cdot a b-2 m n \cdot b c-2 n l \cdot c a-h^{2} \\
& =-3 K^{2}
\end{aligned}
$$

Now, putting the value of l, m, and n in equations (1), (2) and (3), we have

$$
\begin{align*}
2 a-b-c & =0 \\
2 b-a-c & =0 \\
2 c-b-a & =0 \\
\Rightarrow \quad 2 a-b-c & =0 \tag{4}\\
2 a-2 b-c & =0 \tag{5}\\
-a+2 c & =0 \tag{6}
\end{align*}
$$

for equation (5) and (6)

$$
\begin{aligned}
& \frac{a}{4-1}=\frac{b}{1+2}=\frac{c}{1+2}=\omega \text { (Let) } \\
& \therefore a=3 \omega, b=3 \omega, \quad c=3 \omega
\end{aligned}
$$

Now, on substituting a, b, c values in equatein (4), we get

$$
\omega=0
$$

Substituting the values of a, b, c, l, m and n in equa (7) we get,

$$
\begin{aligned}
& 0+0+0-0-0-0-h^{2}=-3 k^{2} \\
& \therefore h=\sqrt{3} k\{h \neq-\sqrt{3} k \text {, because distance } \\
& \left.\quad \begin{array}{l}
\text { is always positive quantity }\}
\end{array}\right\} .
\end{aligned}
$$

Now equation of axis of the cylinder is

$$
\frac{x-0}{1 / \sqrt{2}}=\frac{y-0}{1 / \sqrt{2}}=\frac{z-0}{1 / \sqrt{2}}
$$

So, the axis of cylinder passes through origin and is at equal angle to all coordinate axes
and perpendicular distance from the surface of cylinder to the axis is $\sqrt{3} k$. So, the radius of cylinder is sigma_ys

Now location of the cylinder with respect to the σ_{1}, σ_{2} and σ_{3} axis will look like following shown surface

