MSE 991 Special Topic:

Computational Materials Science

Part II

Yue Qi Philip Eisenlohr

Chemical Engineering and Materials Science Michigan State University

- <u>eisenlohr@egr.msu.edu</u>
- +1 517 432-4506
- room 3520

materials in structural applications

deformation in manufacturing

deformation in manufacturing

deep drawing

Copyright © 2009 CustomPartNet

deformation in manufacturing

spinning

Copyright © 2009 CustomPartNet

deformation in manufacturing

deformation in service

deformation in service

beneficial mechanical properties

- strength / creep resistance
- ductility
- toughness
- fatigue resistance

materials have multiscale hierarchy

the challenges: polycrystallinity

10.1063/1.3100200

introduction

the challenges: microstructure

- ferritic-martensitic steel
- Al-4%Cu
- Mg-5%Zn
- Ni-base alloy

the challenges: deformation mechanisms

dislocation slip

- dislocation structure evolution
 - 4<u>00 nm</u>

 mechanical twinning / displacive transformation

hierarchical modeling

hierarchical modeling

the plan...

	reading assignments	Tuesday	Thursday	Friday Lab	homework
Mar 24	Bulatov, Cai: Computer simulation of dislocations Groh, Zbib: Advances in DDD and multi- scale modeling	Basic idea of discrete dislocation dynamics (DDD), spatial discretizations	DDD mobility tensor, topological updates, inputs from atomistic scales, stress-field calculations	Long-range elastic field of edge dislocation from 2D MD	
Mar 31	Roters, Eisenlohr, Bieler, Raabe: Crystal Plasticity Finite Element Methods in Mater. Sci. and Eng.	Continuum mechanical background of finite strain crystal plasticity	Flexible and modular setup of crystal plasticity simulation	DDD of Frank–Read source, forest interaction	Identify strongest FCC dislocation
Apr 7		Constitutive descriptions of crystal plasticity	Phenomenological approaches, Dislocation mechanics	Install and familiarize with DAMASK	consult / improve DAMASK documentation
Apr 14		Elasto-plastic decomposition, configurations, numerical solution strategies	Polycrystal plasticity, grain interactions	single crystals and bi- crystals under tension	lattice orientation evolution in bicrystal deformation

the plan...

	reading assignments	Tuesday	Thursday	Friday Lab	homework
Apr 21		Homogenization schemes	Single-point, mean- field, interaction, full- field	Grain aggregate deformation with orientation shuffling	Dependence of strength on composition in two- phase polycrystal
Apr 28		Finite element method	Spectral method	Sheet metal forming	
Bonus		Spectral methods for strong property contrast	Spectral methods for strong property contrast	Performance comparison: spectral and finite element method	
Finals		to be decided			

what is a dislocation?

(linear) boundary of a plane through which atoms have been dislocated

 dislocated in-plane (conservative)

 dislocated out-of-plane (non-conservative)

geometrical characterization of dislocations

• Burgers circuit

Burgers vector

geometrical characterization of dislocations

Burgers circuit dislocation line sense

discrete dislocation dynamics

geometrical characterization of dislocations

discrete dislocation dynamics

geometrical characterization of dislocations

dislocation character

- edge type
- mixed type
- screw type

basic idea of DDD

compute and follow the dynamics of dislocation line network

- insight into origin of dislocation patterning
- evolution mechanisms of dislocation structure
- relationship between dislocation structure and strength

basic idea of DDD

compute and follow the dynamics of dislocation line network

- spatial discretization
- driving forces
- mobility
- topological changes

spatial discretization

• eigenstrain field

• front tracking

dislocation

- assumption of straight dislocation lines —> points on plane
- positive / negative Burgers vector or line sense
- multiple slip

advantages

- smaller amount of data
- easier to implement
- much faster
- easy visualization

drawbacks

- only one dislocation character
- limited slip system interaction / reaction products
 - cutting
 - jog formation
- no curvature effects
- dislocation sources?

nodes connected by segments

- linear spline [Bulatov, Zbib, Kubin]
- cubic spline [Ghoniem]
- arc [Schwarz]

- degrees of freedom
 - positions of nodes
 - Burgers vectors (connectivity) at node

advantages

dislocation sources

- curved dislocations
- dislocation cutting / reaction products

drawbacks

- rapid growth of segment count
- computationally demanding
- topological updates

exemplary simulation of dislocation penetration through low angle grain boundary (i.e. dislocation mesh)

driving force

force acting on a dislocation (segment) by either

• Energy variation with position

$$\mathbf{f}_i = -\frac{\partial E_{\text{tot}}(\{\mathbf{r}_i, \mathbf{b}_{ij}\})}{\partial \mathbf{r}_i}$$

• Peach–Koehler force

driving force

energy of dislocation network

$$E_{\rm tot}(C) = E_{\rm el}(C, r_{\rm c}) + E_{\rm core}(C, r_{\rm c})$$

- elastic interaction
- non-local

- dislocation core energy
- local
energy of dislocation network

$$E_{\rm tot}(C) = E_{\rm el}(C, r_{\rm c}) + E_{\rm core}(C, r_{\rm c})$$

$$E_{\rm el}(C, r_c) = \frac{\mu}{16\pi} \oint_C \oint_C b_i b'_j \partial_k \partial_k R_a \, \mathrm{dx}_i \mathrm{dx}'_j - \frac{\mu}{8\pi} \oint_C \oint_C \epsilon_{ijq} \epsilon_{mnq} b_i b'_j \partial_k \partial_k R_a \, \mathrm{dx}_m \mathrm{dx}'_n + \frac{\mu}{8\pi (1-\nu)} \oint_C \oint_C \epsilon_{ikl} \epsilon_{jmn} b_k b'_m \partial_i \partial_j R_a \, \mathrm{dx}_l \mathrm{dx}'_n.$$

see Hirth & Lothe (1982) "Theory of dislocations" for details

energy of dislocation network

$$E_{\text{tot}}(C) = E_{\text{el}}(C, r_{\text{c}}) + E_{\text{core}}(C, r_{\text{c}})$$

analytic expression for integrals

$$\mathbf{f}_i^{\rm el} = -\frac{\partial E_{\rm el}}{\partial \mathbf{r}_i}$$

energy of dislocation network

$$E_{\rm tot}(C) = E_{\rm el}(C, r_{\rm c}) + E_{\rm core}(C, r_{\rm c})$$

$$E_{\text{core}}(C, r_c) = \oint_C E_c(\mathbf{x}; r_c) \, \mathrm{d}L(\mathbf{x})$$

- depends on local line direction
- from atomistic energy minus elastic
- tension to reduce line length
- torque towards low-energy directions

energy of dislocation network

$$E_{\text{tot}}(C) = E_{\text{el}}(C, r_{\text{c}}) + E_{\text{core}}(C, r_{\text{c}})$$

$$E_{\text{core}}(C, r_c) = \sum_{(i-j)} E_c(\theta_{i-j}, \phi_{i-j}; r_c) \|\mathbf{r}_i - \mathbf{r}_j\|$$

- tabulated (interpolated) by direction
- sum over straight segments

$$\mathbf{f}_i^{\text{core}} = -\frac{\partial E_{\text{core}}}{\partial \mathbf{r}_i}$$

force acting on a dislocation (segment)

- Energy variation with position
- Peach–Koehler force

$$\mathbf{f}^{\mathrm{PK}}(\mathbf{x}) = (\boldsymbol{\sigma}(\mathbf{x}) \cdot \mathbf{b}) \times \boldsymbol{\xi}(\mathbf{x})$$

change in elastic energy from Peach–Koehler force

 r_0

• introduce shape function

$$N_i(\mathbf{x}) = \frac{\|\mathbf{x} - \mathbf{r}_j\|}{\|\mathbf{r}_i - \mathbf{r}_j\|}$$

stress from the dislocation network

$$\sigma_{\alpha\beta}(\mathbf{x}) = \frac{\mu}{8\pi} \oint_C \partial_i \partial_p \partial_p R_a \left(b_m \epsilon_{im\alpha} d\mathbf{x}'_\beta + b_m \epsilon_{im\beta} d\mathbf{x}'_\alpha \right) + \frac{\mu}{4\pi (1-\nu)} \oint_C b_m \epsilon_{imk} \left(\partial_i \partial_\alpha \partial_\beta R_a - \delta_{\alpha\beta} \partial_i \partial_p \partial_p R_a \right) d\mathbf{x}'_k$$

see Hirth & Lothe (1982) "Theory of dislocations" for details

$$\sigma_{\alpha\beta}(\mathbf{x}) = \sum_{(k-l)} \sigma_{\alpha\beta}(\mathbf{x}; k-l)$$

$$\mathbf{f}_i^{\text{el}} = \sum_{j} \sum_{(k-l)} \mathbf{f}_i^{\text{el}}(i-j;k-l)$$

contrary to atom motion in molecular dynamics (MD), mobility of (discretization) nodes in dislocation line dynamics is

- typically over-damped
- strongly anisotropic
 - depends on direction of motion ϕ
 - depends on line direction heta

mobility function for over-damped motion

 $\mathbf{v}_i = \mathbf{M}({\{\mathbf{f}_j\}})$ nodal forces nodal velocity

assumption of dislocation drag force

$$\mathbf{f}^{\mathrm{drag}}(\mathbf{x}) = -\mathcal{B}(\boldsymbol{\xi}(\mathbf{x}))\mathbf{v}(\mathbf{x})$$
 per line length drag tensor

local force equilibrium (no acceleration)

$$\begin{aligned} \mathbf{f}^{\text{drag}}(\mathbf{x}) + \mathbf{f}^{\text{drive}}(\mathbf{x}) &= \mathbf{0} \\ \mathbf{f}^{\text{drive}}(\mathbf{x}) &= \mathcal{B}(\boldsymbol{\xi}(\mathbf{x}))\mathbf{v}(\mathbf{x}) \end{aligned}$$

weak(er) form of force balance

$$\oint_C N_i(\mathbf{x}) [\mathbf{f}^{\text{drag}}(\mathbf{x}) + \mathbf{f}^{\text{drive}}(\mathbf{x})] \, dL(\mathbf{x}) = \mathbf{0}$$

exemplary mobility tensor: face-centered cubic

(possible) anisotropy of glide mobility for edge and screw

(strong) anisotropy between glide and climb motion

partial dislocation split restricts screw to glide plane

$\{1\,1\,1\}$

efficient correction of velocities

no out-of-plane component $\mathbf{v}_i \cdot \mathbf{n}_{ij} = 0$ remove normal components $\mathbf{v}_i^{\text{glide}} = \left(\mathbf{I} - \sum_j \mathbf{n}_{ij} \otimes \mathbf{n}_{ij}\right) \mathbf{v}_i$

MICHIGAN STAT

restrict velocity to be normal to segment

${\cal B}({m \xi}) \propto {f I} - {m \xi} \otimes {m \xi}$

$$\mathcal{B}(\boldsymbol{\xi}) = (B_{\mathrm{s,glide}} \cos^2 \theta + B_{\mathrm{e,glide}} \sin^2 \theta) (\mathbf{I} - \boldsymbol{\xi} \otimes \boldsymbol{\xi})$$
$$\mathcal{B}(\boldsymbol{\xi}) = B(\mathbf{I} - \boldsymbol{\xi} \otimes \boldsymbol{\xi})$$

• pure
$$\mathcal{B}(\boldsymbol{\xi}) = B_{\mathrm{s}}(\mathbf{I} - \boldsymbol{\xi} \otimes \boldsymbol{\xi})$$

screw

• mixed
$$~~{\cal B}({m \xi})=B_{
m glide}\,{f m}\otimes{f m}+B_{
m climb}\,{f n}\otimes{f n}$$

$$B_{\text{glide}}^{-2} = B_{\text{e,glide}}^{-2} |\mathbf{b} \times \boldsymbol{\xi}|^2 + B_{\text{s}}^{-2} (\mathbf{b} \cdot \boldsymbol{\xi})^2$$
$$B_{\text{climb}}^2 = B_{\text{e,climb}}^2 |\mathbf{b} \times \boldsymbol{\xi}|^2 + B_{\text{s}}^2 (\mathbf{b} \cdot \boldsymbol{\xi})^2$$

MICHIGAN STATE

topological changes

possible reasons

• rediscretization (numerical)

• junction formation (physical)

MICHIGAN STATE

topological changes: example

junction formation in a low-angle grain boundary

topological changes: rediscretization

• delete

 $\mathbf{b}_{\mathrm{BC}} := \mathbf{b}_{\mathrm{BD}}$ and $\mathbf{b}_{\mathrm{CB}} := \mathbf{b}_{\mathrm{CD}}$

topological changes: rediscretization

algorithm

1. If node N_0 has more than two arms, go to 7. Otherwise, find nodes N_1 and N_2 connected to node N_0 . Obtain positions \mathbf{r}_0 , \mathbf{r}_1 , \mathbf{r}_2 and velocities \mathbf{v}_0 , \mathbf{v}_1 , \mathbf{v}_2 of nodes N_0 , N_1 , N_2 .

elementary topological operators

• split

$$\mathbf{b}_{ai} := \mathbf{b}_{0i} \text{ and } \mathbf{b}_{ia} := \mathbf{b}_{i0} \quad i = 1, \dots, s$$
$$-\mathbf{b}_{a0} = \mathbf{b}_{0a} = \Delta \mathbf{b} = \sum_{i=1}^{s} \mathbf{b}_{ai} \quad \text{if} \quad \Delta \mathbf{b} \neq \mathbf{0}$$

elementary topological operators

when to merge

61

when to split

• multi-arm node with more than 3 segments

 select maximum dissipation rate among possible splits

$$\dot{Q}_P = \mathbf{f}_P \cdot \mathbf{v}_P < \mathbf{f}_{P'} \cdot \mathbf{v}_{P'} + \mathbf{f}_{Q'} \cdot \mathbf{v}_{Q'} = \dot{Q}_{P'Q'}$$

summary of 3D line DD

- spatial discretization of dislocation network via nodes connected by (straight) segments
- arbitrary topological changes through "split" and "merge" operations
- nodal driving force results from (isotropic) elastic interaction between all segments (and core energy variation)
- mobility (drag) tensor connects nodal forces to velocities and can be derived from atomistic calculations of dislocation motion
- omitted: time integration algorithms

suggested background reading

- Jirásek & Bazant: "Inelastic Analysis of Structures" John Wiley & Sons, 2002
- Chadwick: "Continuum Mechanics" Dover Publications, 1999
- course follows Roters, Eisenlohr, Bieler, & Raabe: "Crystal Plasticity Finite Element Methods in Materials Science and Engineering", chapter 3 Wiley-VCH, 2010

Crystal Plasticity Finite Element Methods

in Materials Science and Engineering

content

• kinematics:

study of (typically position-dependent) displacements and, if considering time-dependence, motions of a material body without explicitly asking about the forces that are causing them

• mechanical equilibrium:

conditions for forces acting on the body of material and causing above kinematic reactions

material points and configurations

 $\mathbf{y}(\mathbf{x}): \mathbf{x} \in \mathcal{B}_0 \longmapsto \mathbf{y} \in \mathcal{B}$

$$\mathbf{y} + d\mathbf{y} = \mathbf{y}(\mathbf{x}) + \frac{\partial \mathbf{y}}{\partial \mathbf{x}} d\mathbf{x} + \mathcal{O}(d\mathbf{x}^2)$$
$$d\mathbf{y} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} d\mathbf{x} = \mathbf{F} d\mathbf{x}$$

reference

current

 $\mathbf{F} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \operatorname{Grad} \mathbf{y} \quad \text{or}$ $F_{ij} = \frac{\partial y_i}{\partial x_j} \quad \text{in Cartesian components.}$

reference

current

 $\mathbf{F}^{-1} = \frac{\partial \mathbf{x}}{\partial \mathbf{y}} = \operatorname{grad} \mathbf{x}$ or $F_{ij}^{-1} = \frac{\partial x_i}{\partial y_j}$ in Cartesian components.

mapping of general second-rank tensors between reference and current configuration

• push forward: $\mathbf{A} = \mathbf{F} \, \mathbf{A}_0 \, \mathbf{F}^{-1}$

acting in reference configuration

• pull back $\mathbf{A}_0 = \mathbf{F}^{-1} \, \mathbf{A} \, \mathbf{F}$

acting in current configuration

change in volume

• Jacobian
$$J = \det \mathbf{F} = \frac{\mathrm{d}V}{\mathrm{d}V_0} = \frac{\rho_0}{\rho}$$

change in area

• directed surface
$$d\mathbf{n} = J\mathbf{F}^{-T}d\mathbf{n}_0$$

change in angle

$$\lambda_1 \lambda_2 \cos \theta = \mathbf{a}_1 \cdot \mathbf{C} \, \mathbf{a}_2$$

symmetry of Cauchy–Green tensors

 right Cauchy–Green tensor

$$\begin{split} \mathbf{C} &:= \mathbf{F}^{\mathrm{T}} \mathbf{F} \\ &= \mathbf{F}^{\mathrm{T}} \left(\mathbf{F}^{\mathrm{T}} \right)^{\mathrm{T}} = \left(\mathbf{F}^{\mathrm{T}} \mathbf{F} \right)^{\mathrm{T}} \\ &= \mathbf{C}^{\mathrm{T}} \end{split}$$

 left Cauchy–Green tensor

$$\begin{split} \mathbf{B} &:= \mathbf{F}\mathbf{F}^{\mathrm{T}} \\ &= \left(\mathbf{F}^{\mathrm{T}}\right)^{\mathrm{T}}\mathbf{F}^{\mathrm{T}} = \left(\mathbf{F}\mathbf{F}^{\mathrm{T}}\right)^{\mathrm{T}} \\ &= \mathbf{B}^{\mathrm{T}} \end{split}$$

spectral decomposition of Cauchy–Green tensors

• C is symmetric and positive-definite

$$\mathbf{C} = \sum_{i=1}^{3} \mu_i \, \mathbf{n}_i \otimes \mathbf{n}_i$$

real and positive eigenvalues

• orthogonal eigenvectors

 μ_1, μ_2, μ_3

 $\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3$

spectral decomposition of Cauchy–Green tensors

stretches along eigenvectors

$$\lambda_j^2 = \mathbf{n}_j \cdot \mathbf{C} \mathbf{n}_j$$

$$= \mathbf{n}_j \cdot \left(\sum_{i=1}^3 \mu_i \, \mathbf{n}_i \otimes \mathbf{n}_i\right) \mathbf{n}_j$$

$$= \mathbf{n}_j \cdot \left(\sum_{i=1}^3 \mu_i \, \mathbf{n}_i \, (\mathbf{n}_i \cdot \mathbf{n}_j)\right)$$

$$= \mathbf{n}_j \cdot \left(\sum_{i=1}^3 \mu_i \, \mathbf{n}_i \, \delta_{ij}\right)$$

$$= \mu_j \, \mathbf{n}_j \cdot \mathbf{n}_j$$

$$= \mu_j$$

relation between Cauchy–Green and stretch tensor

 right Cauchy–Green tensor $\mathbf{C} = \sum_{i=1}^{3} \lambda_i^2 \mathbf{n}_i \otimes \mathbf{n}_i$

 $\mathbf{U}\mathbf{U}=\mathbf{U}^2=\mathbf{C}$

• right stretch tensor

$$\mathbf{U} = \sum_{i=1}^{3} \lambda_i \, \mathbf{n}_i \otimes \mathbf{n}_i$$

polar decomposition of deformation gradient

- invertible tensor F $\mathbf{F} = \mathbf{R}\mathbf{U} = \mathbf{V}\mathbf{R}$
- **R** is proper orthogonal (rotation)
- U, V are positive-definite and symmetric

MICHIGAN STATE

UNIVE

polar decomposition of deformation gradient

relation to Cauchy–Green tensors

 $\mathbf{F} = \mathbf{R}\mathbf{U} = \mathbf{V}\mathbf{R}$

$$\begin{split} \mathbf{C} &= \mathbf{F}^{\mathrm{T}} \mathbf{F} & \mathbf{B} = \mathbf{F} \mathbf{F}^{\mathrm{T}} \\ &= \left(\mathbf{R} \mathbf{U} \right)^{\mathrm{T}} \left(\mathbf{R} \mathbf{U} \right) & = \left(\mathbf{V} \mathbf{R} \right) \left(\mathbf{V} \mathbf{R} \right)^{\mathrm{T}} \\ &= \mathbf{U}^{\mathrm{T}} \mathbf{R}^{\mathrm{T}} \mathbf{R} \mathbf{U} & = \mathbf{V} \mathbf{R} \mathbf{R}^{\mathrm{T}} \mathbf{V}^{\mathrm{T}} \\ &= \mathbf{U}^{\mathrm{T}} \mathbf{U} & = \mathbf{V} \mathbf{V}^{\mathrm{T}} \\ &= \mathbf{U}^{2} & = \mathbf{V}^{2} \end{split}$$

MICHIGAN STATE

strain measures

connection to strains and rotations from infinitesimal framework

$$\begin{aligned} \mathbf{F} &= \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \frac{\partial (\mathbf{x} + \mathbf{u})}{\partial \mathbf{x}} \\ &= \mathbf{I} + \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \\ &= \mathbf{I} + \frac{1}{2} \left[\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \right)^{\mathrm{T}} \right] + \frac{1}{2} \left[\frac{\partial \mathbf{u}}{\partial \mathbf{x}} - \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \right)^{\mathrm{T}} \right] \\ &= \mathbf{I} + \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \right)_{\mathrm{sym}} + \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \right)_{\mathrm{skew}} \\ &= \mathbf{I} + \varepsilon + \omega \end{aligned}$$

strain measures

reference

$$\begin{split} \mathbf{C} &= \mathbf{F}^{\mathrm{T}} \mathbf{F} = \left(\mathbf{I} + \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \right)^{\mathrm{T}} \left(\mathbf{I} + \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \right) \\ &= \mathbf{I} + \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \right)^{\mathrm{T}} + \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \right)^{\mathrm{T}} \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \right) \\ &\approx \mathbf{I} + 2\varepsilon \end{split}$$

$$\mathbf{U} = \mathbf{C}^{1/2} \approx \mathbf{I} + \varepsilon$$

strain measures

strains based on right stretch tensor $\ensuremath{\mathbf{U}}$

• Biot
$$\mathbf{E}^{(1)} = \mathbf{U} - \mathbf{I}$$

• Green's Lagrangian

$$\mathbf{E} = \mathbf{E}^{(2)} = \frac{1}{2} \left(\mathbf{U}^2 - \mathbf{I} \right)$$
$$= \frac{1}{2} \left(\mathbf{C} - \mathbf{I} \right) = \frac{1}{2} \left(\mathbf{F}^{\mathrm{T}} \mathbf{F} - \mathbf{I} \right)$$

• Doyle-Ericksen
$$\mathbf{E}^{(m)} = \frac{1}{m} \left(\mathbf{U}^m - \mathbf{I} \right)$$

time-dependent displacement, motion $\mathbf{y}(t)$

reference

current

• velocity field $\mathbf{v} = \frac{\mathrm{d}}{\mathrm{d}t} \, \mathbf{u} = \dot{\mathbf{u}} = \dot{\mathbf{y}}$

$$\mathbf{L} = \frac{\partial \mathbf{v}}{\partial \mathbf{y}} = \operatorname{grad} \mathbf{v}$$

(relative velocity between two points in current configuration)

relation to rate of change of deformation gradient

material time derivatives

$$(d\mathbf{y}) = (\mathbf{F} d\mathbf{x})$$
$$= \dot{\mathbf{F}} d\mathbf{x} + \mathbf{F} (d\mathbf{x})$$
$$= \dot{\mathbf{F}} d\mathbf{x}$$
$$= \mathbf{L} \mathbf{F} d\mathbf{x}$$
$$= \mathbf{L} \mathbf{F} d\mathbf{x}$$

$$(d\mathbf{y})' = \mathbf{L} d\mathbf{y}$$
$$(dl \mathbf{b})' = \mathbf{L} dl \mathbf{b}$$
$$(dl)' \mathbf{b} + dl \dot{\mathbf{b}} = \mathbf{L} dl \mathbf{b}$$
$$\mathbf{b} \cdot \mathbf{b} (dl)' + \mathbf{b} \cdot \dot{\mathbf{b}} dl = \mathbf{b} \cdot \mathbf{L} dl \mathbf{b}$$
$$(dl)' = \mathbf{b} \cdot \mathbf{L} dl \mathbf{b}$$

additive decomposition

$$\mathbf{L} = \mathbf{L}_{sym} + \mathbf{L}_{skew} = \frac{1}{2} \left(\mathbf{L} + \mathbf{L}^{T} \right) + \frac{1}{2} \left(\mathbf{L} - \mathbf{L}^{T} \right) = \mathbf{D} + \mathbf{W}$$
spin rate tensor

elastic only

elasto-plastic decomposition

unstrained

crystalline solid

- elastic and/or plastic shape change
- pure plastic is lattice-invariant and stress-free

plastic from single elasto-plastic dislocation

$$\mathbf{F} = \mathbf{F}_{e}\mathbf{F}_{p}$$

velocity gradient decomposition

first Piola-

Kirchhoff

(nominal) stress

Cauchy stress

- body force field
- surface tractions

$$\mathbf{k} = \int_{\mathcal{S}_0} \mathbf{P} \, \mathrm{d} \mathbf{n}_0 = \int_{\mathcal{S}} \boldsymbol{\sigma} \, \mathrm{d} \mathbf{n}$$

 $\mathrm{d}\mathbf{n} = J\mathbf{F}^{-\mathrm{T}}\mathrm{d}\mathbf{n}_0$

$$\mathbf{P} = J\boldsymbol{\sigma}\mathbf{F}^{-\mathrm{T}}$$

total force acting on body

integration of body forces and surface tractions

$$\mathbf{f} = \int_{\mathcal{B}_0} \rho_0 \, \dot{\mathbf{v}} \, \mathrm{d}V_0 = \int_{\mathcal{B}_0} \rho_0 \, \mathbf{g} \, \mathrm{d}V_0 + \int_{\mathcal{S}_0} \mathbf{t}_0 \, \mathrm{d}S_0$$

balance of linear momentum

reference

$$\begin{split} \mathbf{D} &= \int_{\mathcal{B}_0} \left(\rho_0 \, \mathbf{g} + \frac{\partial \mathbf{P}}{\partial \mathbf{x}} - \rho_0 \, \dot{\mathbf{v}} \right) \mathrm{d}V_0 \\ &= \int_{\mathcal{B}_0} \left(\mathrm{Div} \, \mathbf{P} + \rho_0 \left(\mathbf{g} - \dot{\mathbf{v}} \right) \right) \mathrm{d}V_0 \\ &\qquad \mathrm{Div} \, \mathbf{P} = \rho_0 \left(\dot{\mathbf{v}} - \mathbf{g} \right) \qquad \begin{array}{c} \mathrm{negligible \ body} \\ \mathrm{forces \ and} \\ \mathrm{acceleration} \end{array}$$

balance of angular momentum

$$\mathbf{P}\mathbf{F}^{\mathrm{T}} = \mathbf{F}\mathbf{P}^{\mathrm{T}} \iff \boldsymbol{\sigma} = \boldsymbol{\sigma}^{\mathrm{T}}$$

overview

- modeling objective
- material point
- hierarchical simulation framework

MICHIGAN STATE

material point

material point

local material constitution depends on ratio of mesh size / microstructure size

- direct crystal plasticity (mesh finer than crystallites)
- statistical crystal plasticity (mesh larger than crystallites)

MICHIGAN STATE

material point constitution

direct crystal plasticity

continuum modeling of microstructured solids

material point constitution

subdivision into tractable problems

single crystal constitution

elasto-plasticity

- P(F) is known for purely elastic deformation
- in general, P(F) is not directly accessible since rate of plasticity is driven by stress

(recall part on driving force in DDD lecture)

single crystal constitution

Maxwell model of elasto-plasticity

MICHIGAN STATE

single crystal constitutive law

- internal state variables
- elastic stress

- plastic velocity gradient
- rate of internal state evolution

$$\begin{split} \mathbf{S} &= \mathbf{S}(\mathbf{F}_{e}, \mathbf{s}) \\ &= \mathbb{C} : \mathbf{E} = \mathbb{C} : (\mathbf{F}_{e}^{\mathsf{T}} \mathbf{F}_{e} - \mathbf{I})/2 \\ \mathbf{L}_{p} &= \mathbf{L}_{p}(\mathbf{S}, \mathbf{s}) \end{split}$$

 $\dot{\mathbf{s}} = \dot{\mathbf{s}}(\mathbf{S}, \mathbf{s})$

S

continuum modeling of microstructured solids

upcoming lectures

- constitutive descriptions of single crystal plasticity
- time integration and numerical solution schemes
- polycrystal plasticity, microstructure homogenization
- solution methods for full-field mechanical boundary value problem

flexible material point setup

<ptionagenization></ptionagenization>						
[Aayhair]um_j22]isotropic]						
ty gst iallitye Isosta	ealin					
bigssici tyenj∄	phase 1	texture 1	fraction 1.0			
[(EffaitsCales ter]	flowstress					
(output) type tallite	strainrate RGC					
(biginsitis uent)	B Habe	texture 1	fraction 0.82			
taylorfactor	මැසියිමේ සිට 3	texture 1	fraction U.18			
tauO 31eE						

112

overview

- lattice slip kinematics and resolved stress
- experimental background
- phenomenological descriptions
- dislocation density-based descriptions

resolved stress

 rotation of slip direction and slip plane normal

lattice slip kinematics

MICHIGAN STATE

MICHIGAN STATE

lattice slip kinematics (tension)

MICHIGAN STATE

lattice slip kinematics

$$\frac{\partial \mathbf{u}}{\partial \mathbf{y}} \mathbf{h} = \mathbf{b}$$
$$\frac{\partial \mathbf{u}}{\partial \mathbf{y}} h \mathbf{n} = b \mathbf{m}$$
$$\frac{\partial \mathbf{u}}{\partial \mathbf{y}} = \frac{b}{h} \mathbf{m} \otimes \mathbf{n}$$
$$\frac{\partial \mathbf{u}}{\partial \mathbf{y}} = \frac{bA}{V} \mathbf{m} \otimes \mathbf{n} = \gamma \mathbf{m} \otimes \mathbf{n}$$
$$\frac{\partial \mathbf{v}}{\partial \mathbf{y}} = \frac{b\dot{A}}{V} \mathbf{m} \otimes \mathbf{n} = \dot{\gamma} \mathbf{m} \otimes \mathbf{n}$$

slip system geometry lattice slip kinematics

$$\mathbf{L}_{\mathrm{p}} = \sum_{lpha} \dot{\gamma}^{lpha} \, \mathbf{m}^{lpha} \otimes \mathbf{n}^{lpha}$$

MICHIGAN STATE

experimental background

single crystal deformation

experimental background

single crystal deformation

- I: slip over large areas, little dislocation deposition on 2nd systems
- II: formation of locked configurations, fresh dislocations required
- III: increasing influence of dynamic annihilation

- internal state parameterization
- internal state evolution
- slip kinetics

internal state parameterization

 resistance to deformation on each slip system

positive *and* negative sense

 g^{α}

MICHIGAN STATE

internal state evolution

• slip causes change in deformation resistance

$$\mathrm{d}g^{\alpha} = h^{\alpha\beta} \left| \mathrm{d}\gamma^{\beta} \right|$$

$$\begin{split} \dot{g}^{\alpha} &= h^{\alpha\beta} \left| \dot{\gamma}^{\beta} \right| \\ &= q^{\alpha\beta} h_0 \left[\operatorname{sgn} \left(1 - \frac{g}{g_{\infty}} \right) \left| 1 - \frac{g}{g_{\infty}} \right|^a \right] \left| \dot{\gamma}^{\beta} \right| \\ & \swarrow \end{split}$$
System saturation

slip s interaction

level

MICHIGAN STATE

slip kinetics

 non-linear relation between deformation rate and applied stress stress sensitivity or rate insensitivity

$$\dot{\gamma}^{\alpha} = \dot{\gamma}_0 \left| \frac{\tau^{\alpha}}{g^{\alpha}} \right|^n \operatorname{sgn}\left(\tau^{\alpha}\right)$$

advantages

- relatively simple
- 10 parameters

drawbacks

- no intrinsic temperature dependence
- no clear mechanism(s) for internal state evolution

- internal state parameterization
- internal state evolution
- slip kinetics

MICHIGAN STATE

dislocation density-based description

internal state parameterization

 dislocation density on each slip system

 ϱ^{α}

internal state evolution

dislocation production

 $\dot{\varrho}^{\alpha}_+$

 $\dot{\varrho}^{\alpha}_{-}$

• dislocation annihilation

MICHIGAN STATE

UN

internal state evolution: production

- dislocations get stuck while slipping
- geometric parameter: slipped area per deposited dislocation length
- rate of dislocation density increase

٨

MICHIGAN STA

internal state evolution: production

• geometric parameter is structure dependent

$$\Lambda \propto \varrho^{-0.5}$$

$$\mathrm{d}\varrho^{\alpha} = \frac{\sqrt{\varrho^{\alpha}}}{b\,c_{\Lambda}}\,|\mathrm{d}\gamma^{\alpha}|$$

$$\dot{\varrho}^{\alpha} = \frac{\sqrt{\varrho^{\alpha}}}{b \, c_{\Lambda}} \left| \dot{\gamma}^{\alpha} \right|$$

internal state evolution: annihilation

 encounter of compatible slipped area

$$d\varrho_{-}^{\alpha} = 2\varrho^{\alpha} \, d\ln V$$
$$= 2 \cdot 2\varrho^{\alpha} \, \frac{d^{\star}}{b} \, \left| d\gamma^{\alpha} \right|$$

• sampled volume fraction

$$d\ln V = \frac{dA^+}{V} 2d^*$$
$$= \frac{d\gamma}{b} 2d^*$$

internal state evolution: additional states

 stable dipoles as precursor for annihilation following glideindependent process

locked dislocation situations

slip kinetics

• Orowan equation

 $\dot{\gamma}^{\alpha} = \varrho^{\alpha} \, b \, v^{\alpha}$

velocity of dislocation motion

MICHIGAN STATE

possible obstacles to dislocation motion

- dislocation structure
- Peierls barrier
- solute atoms (or clusters)

dislocation density as obstacle to dislocation motion

- no thermal activation possible
- mechanical threshold

$$\tau_{\rm eff} = \begin{cases} (|\tau| - \tau_{\rm cr}) \operatorname{sgn}(\tau) & \text{if } |\tau| > \tau_{\rm cr} \\ 0 & \text{if } |\tau| \le \tau_{\rm cr} \end{cases}$$

• slip system interaction

$$\tau^{\alpha}_{\rm cr} = \mu \, b \sqrt{a_{\alpha\beta} \, \varrho^{\beta}}$$

slip system interactions (fcc)

• self

- coplanar
- collinear
- Hirth lock
- Lomer lock
- glissile junction

ξ	1	2	3	4	5	6		7	8	9	10	11	12
1	S	cp	cp	h	1	g		cl	g	g	h	g	1
2	cp	S	ср	1	h	g		g	h	1	g	cl	g
3	cp	cp	S	g	g	cl		g	1	h	1	g	h
4	h	1	g	S	cp	cp		h	g	1	cl	g	g
5	1	h	g	cp	S	cp		g	cl	g	g	h	1
6	g	g	cl	cp	ср	S		1	g	h	g	1	h
7	cl	g	g	h	g	1		S	cp	cp	h	1	g
8	g	h	1	g	cl	g	(ср	S	cp	1	h	g
9	g	1	h	1	g	h	C	ср	cp	S	g	g	cl
10	h	g	1	cl	g	g		h	1	g	S	ср	ср
11	g	cl	g	g	h	1		1	h	g	cp	S	ср
12	1	g	h	g	1	h		g	g	cl	ср	ср	S

slip system interactions (fcc)

 determination of interaction strength from computational experiments using discrete dislocation dynamics

interaction type	interaction coefficient				
self	0				
coplanar	0				
collinear	0.625				
Hirth	0.07				
glissile	0.137				
Lomer	0.122				

Kubin et al. 2008 PhD thesis Kords 2013

MICHIGAN STATE

UNIVE

thermally activated obstacles

- solid solution atoms
- Peierls barrier

MICHIGAN STATE

<u>U</u>NIVE

thermally activated obstacles

- solid solution atoms
- Peierls barrier

• probability to
overcome obstacle
$$P = \exp\left(-\frac{Q}{k_{\rm B}T}\left(1 - \left(\frac{|\tau_{\rm eff}|}{\hat{\tau}}\right)^p\right)^q\right)$$

thermally activated obstacles

- solid solution $l_{\rm S} = \frac{b}{\sqrt{c_{\rm at}}} \qquad s_{\rm S} = d_{\rm obst}$ atoms
- Peierls barrier $l_{\rm p} = w_{\rm kink}$ $s_{\rm p} = b$

activation energy
$$Q = \hat{\tau} A b = \hat{\tau} l s b$$

$$P = \exp\left(-\frac{Q}{k_{\rm B}T}\left(1 - \left(\frac{|\tau_{\rm eff}|}{\hat{\tau}}\right)^p\right)^q\right)$$

 probability to overcome obstacle

effective velocity of obstacle overcoming

attempt frequency $t = (\nu_{\rm a} \, P)^{-1}$

• waiting time at obstacle

 average travel distance between obstacles

$$\lambda_{\rm S} = \frac{b}{\sqrt{c_{\rm at}}} \qquad \qquad \lambda_{\rm P} = b$$

 travel velocity between obstacles

$$v_{\rm T} = M \left| \tau_{\rm eff} \right|$$

MICHIGAN STATE

dislocation density-based description

effective velocity of obstacle overcoming

$$v = \frac{\lambda}{t + \frac{\lambda}{v_{\mathrm{T}}}} = \left(\frac{t}{\lambda} + \frac{1}{v_{\mathrm{T}}}\right)^{-1}$$
$$\frac{t}{\lambda} = \frac{t_{\mathrm{P}}}{\lambda_{\mathrm{P}}} + \frac{t_{\mathrm{S}}}{\lambda_{\mathrm{S}}} + \dots$$

MICHIGAN STATE

tension of a single crystal compared to a bicrystal

solutions

• mean-field methods

• grain cluster approaches

• computational homogenization

- no rigorous solution of microscopic boundary value problem
- spatially averaged quantities

homogeneous in inclusion (i)

$$\overline{\mathbf{F}} = \frac{1}{V_0} \sum V_0^{(i)} \mathbf{F}^{(i)} = \langle \mathbf{F}^{(i)} \rangle$$

$$\overline{\mathbf{P}} = \frac{1}{V_0} \sum V_0^{(i)} \mathbf{P}^{(i)} = \langle \mathbf{P}^{(i)} \rangle$$

MICHIGAN STATE

mean-field methods

iso-strain

 $\mathbf{F}^{(i)} = \overline{\mathbf{F}}$ $\overline{\mathbf{P}} = \langle \mathbf{P}^{(i)}
angle$

Taylor, G. I. (1938). Plastic strain in metals. J. Inst. Metals, 62, 307–324.

iso-stress

 $\mathbf{P}^{(i)} = \overline{\mathbf{P}}$

$$\overline{\mathbf{F}} = \langle \mathbf{F}^{(i)}
angle$$

Sachs, G. (1928). Zur Ableitung einer Fließbedingung. Z. Ver. Deutsch. Ing., 72, 734–736.

iso-work rate

• variable deformation rate $\dot{\mathbf{F}}^{(i)}$

$$\dot{\mathbf{F}}^{(i)} = \lambda^{(i)} \overline{\mathbf{F}}$$

• volume average

$$\dot{\overline{\mathbf{F}}} = \sum \nu^{(i)} \dot{\mathbf{F}}^{(i)}$$

• constraint

$$\sum \nu^{(i)} \lambda^{(i)} = 1$$

Tjahjanto, D. D., Roters, F., & Eisenlohr, P. (2007). Iso-work-rate weighted-Taylor homogenization scheme for multiphase steels assisted by transformation-induced plasticity effect. steel research, 78(10-11), 777–783.

iso-work rate

• equivalent rate of work

$$\mathbf{P}^{(i)} \cdot \dot{\mathbf{F}}^{(i)} = \mathbf{P}^{(N)} \cdot \dot{\mathbf{F}}^{(N)}$$

 non-linear equation system for free parameters

$$\left[\lambda^{(i)}\mathbf{P}^{(i)}(\lambda^{(i)}) - \lambda^{(N)}\mathbf{P}^{(N)}(\lambda^{(N)})\right] \cdot \dot{\overline{\mathbf{F}}} = 0$$

Tjahjanto, D. D., Roters, F., & Eisenlohr, P. (2007). Iso-work-rate weighted-Taylor homogenization scheme for multiphase steels assisted by transformation-induced plasticity effect. steel research, 78(10-11), 777–783.

(elastic) composites

- macro $\mathbb{C} = [\nu_0 \mathbb{C}_0 + \nu_1 \mathbb{C}_1 : \mathbb{B}]:$ stiffness $\left[\nu_0 \mathbb{I} + \nu_1 \mathbb{B}\right]^{-1}$ $\mathbb{B} = \mathbb{I}$
- iso-strain

 $\mathbb{B} = \mathbb{C}_1^{-1} : \mathbb{C}_0$ iso-stress

Eshelby formalism

Eshelby formalism

• cut out

Eshelby formalism

- cut out
- stress-free eigenstrain

Eshelby formalism

- cut out
- stress-free
 eigenstrain

 $\boldsymbol{\epsilon}^{*}$

 σ^*

 apply stress (or traction)

Eshelby formalism

- cut out
- stress-free eigenstrain
- apply stress (or traction)

Π

*

• put back

Eshelby formalism

- cut out
- stress-free
 eigenstrain
- apply stress (or traction)

• put back

within ellipsoidal inclusions

isolated inclusion

unknown composite modulus

• self- $\epsilon_1 =$ consistent

$$\epsilon_1 = \mathbb{H}(I, \mathbb{C}, \mathbb{C}_1) \epsilon$$

• Mori–Tanaka (1973)

$$\boldsymbol{\epsilon}_1 = \mathbb{H}(I, \mathbb{C}_0, \mathbb{C}_1) \boldsymbol{\epsilon}_0$$

inclusion experiences matrix strain as far-field strain

summary

- inclined towards (relatively) isolated inclusions (no heterogeneous neighborhood)
- extension to non-linear materials not trivial

strategy

- partial relaxation of iso-strain assumption
- compatibility maintained on average
- stress equilibrium partly fulfilled

LAMEL

Grain a $Grain_{6}$ $Grain_{6}$ e_{1} $e_{3} = n$ e_{1} e_{2}

- stack of two "flat" grains
- stack experiences plastic velocity gradient
- each grain may deviate by two shear relaxation modes

$$\begin{split} \Delta \mathbf{L}_{\mathrm{p}} &= \sum_{r=1}^{2} \dot{\gamma}_{\mathrm{rlx}}^{r} \mathbf{K}_{\mathrm{rlx}}^{r} = \dot{\gamma}_{\mathrm{rlx}}^{1} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \dot{\gamma}_{\mathrm{rlx}}^{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \\ &= \begin{pmatrix} 0 & 0 & \dot{\gamma}_{\mathrm{rlx}}^{1} \\ 0 & 0 & \dot{\gamma}_{\mathrm{rlx}}^{2} \\ 0 & 0 & 0 \end{pmatrix} \end{split}$$

LAMEL

• symmetric distribution (valid for equal grain volume)

$$egin{aligned} \mathbf{L}^a &= \mathbf{L}_\mathrm{p} + \Delta \mathbf{L}_\mathrm{p} = \sum_{lpha=1}^{N^a} \left(\mathbf{m}^lpha \otimes \mathbf{n}^lpha
ight) \dot{\gamma}^lpha \ \mathbf{L}^b &= \mathbf{L}_\mathrm{p} - \Delta \mathbf{L}_\mathrm{p} = \sum_{eta=1}^{N^b} \left(\mathbf{m}^eta \otimes \mathbf{n}^eta
ight) \dot{\gamma}^eta \ , \end{aligned}$$

 usually slip system activity differs in both grains

LAMEL

 solution minimizes plastic dissipation rate

LAMEL advancements

 relax grain boundary neighborhoods

strategy

 extension of mono-directional to tri-directional "stack"

grain interaction (GIA) model (2 x 2 x 2 grains)

- relax all grain pairs stacked along the shortest and second shortest dimension as in LAMEL
- resulting incompatibility (excess/gaping) is translated into geometrically necessary dislocation density with associated (penalty) energy

[•] Wagner, P. (1994). Zusammenhange zwischen mikro- und makroskopischen Verformungsinhomogenitäten und der Textur. Ph.D. thesis, RWTH Aachen

Crumbach, M., Pomana, G., Wagner, P., & Gottstein, G. (2001). A Taylor type deformation texture model considering grain interaction and material properties. Part I – Fundamentals. In G. Gottstein, & D. A. Molodov (Eds.), Recrystallisation and Grain Growth, Proceedings of the First Joint Conference (pp. 1053–1060). Berlin: Springer

relaxed grain cluster (RGC) model (p x q x r grains)

- generalization of GIA
 - finite strain
 - arbitrary relaxations
 - arbitrary cluster size

Tjahjanto, D. D., Eisenlohr, P., & Roters, F. (2010). A novel grain cluster-based homogenization scheme. Modelling and Simulation in Materials Science and Engineering, 18, 015006

relaxed grain cluster (RGC) model (p x q x r grains)

 relaxation vector displaces mutual interface

relaxed grain cluster (RGC) model (p x q x r grains)

relaxed grain cluster (RGC) model (p x q x r grains)

- relaxation vector displaces mutual interface
- compatible relaxation
- incompatible relaxation

relaxed grain cluster (RGC) model (p x q x r grains)

 individual grain deformation gradient

$$\mathbf{F}^{g} = \bar{\mathbf{F}} + \sum_{\pm \alpha = 1}^{3} \frac{1}{d_{\alpha}} \left(\mathbf{a}^{g}_{\alpha} \otimes \mathbf{n}^{g}_{\alpha} \right)$$

 mismatch (surface dislocation tensor) across interface

$$\mathbf{M}_{\alpha}^{g} = -\frac{1}{2} \left(\mathbf{n}_{\alpha}^{g} \times \Delta \mathbf{F}_{\alpha}^{g \mathrm{T}} \right)^{\mathrm{T}}$$
magnitude determines
penalty energy density

computational homogenization

strategy

- spatially resolve the microstructure
- given boundary conditions from macroscopic material "point" \overline{F} \overline{P}
- solve microscopic fields of displacement and stress

MICHIGAN STATE

computational homogenization

computational homogenization

average microscopic displacement gradient

$$\overline{\mathbf{F}} = \int_{\mathcal{B}_0} \mathbf{F} \, \mathrm{d}V_0$$
$$= \int_{\mathcal{B}_0} \overline{\mathbf{F}} + \widetilde{\mathbf{F}} \, \mathrm{d}V_0$$

$$= \overline{\mathbf{F}} + \underbrace{\int_{\mathcal{B}_0} \widetilde{\mathbf{F}} \, \mathrm{d}V_0}_{\stackrel{!}{=} \mathbf{0}}$$
boundary conditions

examples

Computational Materials Science 16 (1999) 344-354

COMPUTATIONAL MATERIALS SCIENCE

Multiscale FE² elastoviscoplastic analysis of composite structures

Frédéric Feyel

ONERA LCME/DMSE, BP 72, 29 Avenue de al Division Leclere, 92372 Chatillon Cedex, France

Comput. Methods Appl. Mech. Engrg. 183 (2000) 309-330

in applied mechanics and engineering

Computer methods

www.elsevier.com/locate/cma

FE² multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials

Frédéric Feyel, Jean-Louis Chaboche * ONERA DMSE-LCME, 29 Avenue de la Division Leclerc, F-92320, Châtillon, France Received 17 April 1998

examples

Computational Mechanics 27 (2001) 37-48 © Springer-Verlag 2001

An approach to micro-macro modeling of heterogeneous materials

V. Kouznetsova, W. A. M. Brekelmans, F. P. T. Baaijens

examples: porous aluminum

• regular array (cubic unitcell)

• random porosity

crystallite orientation description

 rotation matrix relating reference to crystal frame

$$\left(\begin{array}{c} X\\Y\\Z\end{array}\right) = \mathbf{Q} \left(\begin{array}{c} x\\y\\z\end{array}\right)$$

 probability density to find volume fraction of crystallites at a point in orientation space

$$\nu \equiv \frac{\mathrm{d}V}{V} = f(\mathbf{Q}) \,\mathrm{d}Q$$

crystallite orientation distribution function (CODF)

infinitesimal volume

of orientation space

orientation space

• Bunge (1982) z-x-z rotation

$$dQ = \frac{1}{8\pi^2} d\varphi_1 d\cos\phi d\varphi_2$$
$$= \frac{\sin\phi}{8\pi^2} d\varphi_1 d\phi d\varphi_2$$

orientation space discretization

• Bunge (1982) z-x-z rotation

$$dQ = \frac{1}{8\pi^2} d\varphi_1 d\cos\phi d\varphi_2$$
$$= \frac{\sin\phi}{8\pi^2} d\varphi_1 d\phi d\varphi_2$$

representation by discrete number of orientations

 how to select a given number of orientations to best represent an orientation distribution ?

$$p(\mathbf{Q}^i) = \frac{f^i \sin \phi^i}{\max(f \sin \phi)}$$

representation by discrete number of orientations

 how to select a given number of orientations to best represent an orientation distribution ?

$$n^{*i} = \operatorname{round}(C\nu^i)$$

Eisenlohr, P., & Roters, F. (2008). Selecting sets of discrete orientations for accurate texture reconstruction. Computational Materials Science, 42(4), 670–678.

representation by discrete number of orientations

 systematic over-prediction at (relatively) low numbers of discrete orientations

representation by discrete number of orientations

 systematic over-prediction at (relatively) low numbers of discrete orientations

 blend of probabilistic and deterministic schemes ("hybrid")

purpose

- generate an approximate solution to
- a boundary value problem (field problem) on
- an (irregular) domain
- governed by (a system of) partial differential equations (PDEs)

classification of PDEs

$$F(x,y,\ldots,u,u_{,x},u_{,y},\ldots,u_{,xx},u_{,xy},u_{,yy},\ldots)=0$$
 independent dependent variables variable

- order: highest derivative
- linear/non-linear: in dependent variable or its derivative

classification of second-order PDEs

$$A u_{,xx} + B u_{,xy} + C u_{,yy} = D$$

- elliptic (heat conduction, electrostatics) $B^2 4AC < 0$ $u_{,xx} + u_{,yy} = f(x,y)$
- $B^2 4AC = 0$ • parabolic (diffusion)

 $u_{,xx} = u_{,t}$

 $B^2 - 4AC > 0$

hyperbolic (wave equation)

$$c^2 u_{,xx} - u_{,tt} = 0$$

governing PDE

discretization of function space and domain

• "triangulation" of domain

 low-order polynomial in each element

$$p = a_1$$

+ $a_2x + a_3y$
+ $a_4xx + a_5xy + a_6yy$
+ ...

approximation within single element

 function determined by nodal values

 edge values only depend on values at shared nodes

approximation within domain

• globally continuous

 uniquely defined by set of nodal values

• interpolation by basis functions

solution to weak form

 nodal basis functions as test function

 $\int N_i F = 0$ system of N

equations to solve for unknown nodal degrees of freedom example problem: taut wire

P. Krysl, Thermal and stress analysis with the finite element method, Pressure Cooker Press, 2010

governing equation

P. Krysl, Thermal and stress analysis with the finite element method, Pressure Cooker Press, 2010

boundary condition

condition

 $Pw'(L,t) = F_L(t)$

P. Krysl, Thermal and stress analysis with the finite element method, Pressure Cooker Press, 2010

initial condition

• position
$$w(x,0) = \bar{w}(x)$$

• velocity
$$\dot{w}(x,0) = \bar{v}(x)$$

finite element method

Galerkin method of weighted residual

static case for simplicity

 approximate fulfillment of the governing equation(s) by

• minimizing the residual

 weighting the residual by test function

$$\int_0^L r_{\rm B}(x) \,\mathrm{d}x \stackrel{!}{=} 0$$

 $Pw''(x) + q(x) = r_{\rm B}(x)$

$$\int_0^L \eta(x) r_{\rm B}(x) \,\mathrm{d}x \stackrel{!}{=} 0$$

• use multiple test functions with limited support

$$\int_0^L \eta_j(x) r_{\mathrm{B}}(x) \,\mathrm{d}x \stackrel{!}{=} 0$$

shifting derivatives for piecewise linear approximation

$$\int_{0}^{L} \eta_{j}(x) r_{B}(x) dx = \int_{0}^{L} \eta_{j}(x) Pw''(x) dx + \int_{0}^{L} \eta_{j}(x) q(x) dx$$

$$(\eta_{j} Pw')' = \eta_{j}' Pw' + \eta_{j} Pw''$$
only first derivatives
$$\int_{0}^{L} \eta_{j} Pw'' dx = \eta_{j}(L) Pw'(L) - \eta_{j}(0) Pw'(0) - \int_{0}^{L} \eta_{j}' Pw' dx$$

essential boundary condition

• fix the value(s) of the trial function

$$w(0) \equiv \bar{w}_0$$

natural boundary condition

 direct control of derivative not feasible

• introduce residual $r_F = -Pw'(L) + F_L$

$$\eta_j(L)r_F = \eta_j(L)(-Pw'(L) + F_L) = 0$$
natural boundary condition

• combine
both
residuals
$$\int_{0}^{L} n_{j} r_{B} dx + n_{j}(L)r_{F} = n_{j}(L)Pw'(L) - n_{j}(0)Pw'(0)$$
$$- \int_{0}^{L} n'_{j}Pw' dx + \int_{0}^{L} n_{j} q dx$$
$$+ (n_{j}(L)(-Pw'(L)) + F_{L})$$
$$= - n_{j}(0)Pw'(0)$$
$$- \int_{0}^{L} n'_{j}Pw' dx + \int_{0}^{L} n_{j} q dx$$
$$+ n_{j}(L)F_{L}$$
$$= 0$$

stiffness matrix and load vector

residuals

$$\eta_{j}(L)F_{L} - \int_{0}^{L} \eta_{j}' P \sum_{i=1}^{N} N_{i}' w_{i} \, \mathrm{d}x + \int_{0}^{L} \eta_{j} q \, \mathrm{d}x = 0, \quad j = 1, ..., N$$

$$\eta_{j}(L)F_{L} - \sum_{i=1}^{N} \left(\int_{0}^{L} \eta_{j}' P N_{i}' \, \mathrm{d}x \right) w_{i} + \int_{0}^{L} \eta_{j} q \, \mathrm{d}x = 0.$$

• stiffness matrix
$$K_{ji} = \int_0^L \eta_j' P N_i' \, \mathrm{d}x$$

• load vector
$$L_j = \eta_j(L)F_L + \int_0^L \eta_j q \, \mathrm{d}x$$

$$\sum_{i=1}^{N} K_{ji} w_i = L_j, \quad j = 1, \dots, N$$

outline

- background and opportunities
- methodology
- exemplary results
- limitations

background

macromechanics

- complex geometry
- finite element method established

background

micromechanics

- periodic geometry
- shape-conforming mesh
- regular grid
- finite element method challenged by large number of degrees of freedom

opportunities

- one-to-one comparison to experiment
 - verification of constitutive assumptions
- research and knowledge
 - influence of microstructural parameters
 - localization
 - hot spots
 - damage nucleation

- optimization
 - constituent properties
 - morphology
 - orientation distribution
 - misorientation distribution
- computational homogenization

historical development

- Moulinec, H., & Suquet, P. (1994).
 A fast numerical method for computing the linear and nonlinear properties of composites.
 C. R. Acad. Sci. Paris Ser. II, 318, 1417–1423.
- Moulinec, H., & Suquet, P. (1998).
 A numerical method for computing the overall response of nonlinear composites with complex microstructure.
 Computer Methods in Applied Mechanics and Engineering, 157(1-2), 69–94.
- Lebensohn, R. A. (2001).
 N-site modeling of a 3D viscoplastic polycrystal using Fast Fourier Transform. Acta Materialia, 49(14), 2723–2737.
- Lahellec, N., Michel, J. C., Moulinec, H., & Suquet, P. (2001).
 Analysis of inhomogeneous materials at large strains using fast Fourier transforms.
 In C. Miehe (Ed.), Proc. IUTAM Symposium (pp. 247–258). Solid Mechanics and its Applications, 108. Dordrecht, The Netherlands: Kluwer Academic Publishers.
- Lebensohn, R. A., Kanjarla, A. K., & Eisenlohr, P. (2012).
 An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int. J. Plast., 32-33, 59–69.
- Eisenlohr, P., Diehl, M., Lebensohn, R. A., & Roters, F. (2013).
 A spectral method solution to crystal elasto-viscoplasticity at finite strains. Int. J. Plast., 46, 37–53.

finite strain kinematic framework

linear reference material

• arbitrary rate-dependent constitutive law

$$\mathbf{P}(\mathbf{x}) = \mathbf{f}(\mathbf{x}, \mathbf{F}, \dot{\mathbf{F}}, \mathbf{v})$$

 linear comparison material of stiffness

$$\mathbf{P}(\mathbf{x}) = \mathbb{A}\mathbf{F}(\mathbf{x}) + \underbrace{\mathbf{P}(\mathbf{x}) - \mathbb{A}\mathbf{F}(\mathbf{x})}_{= \mathbb{A}\mathbf{F}(\mathbf{x}) + \mathbf{\tau}(\mathbf{x})}$$

static equilibrium

• divergence-free stress field

$$0 = \text{Div} \mathbf{P}(\mathbf{x})$$

= Div (AF(x) + $\boldsymbol{\tau}(\mathbf{x})$)
= $\left\{ \mathbb{A} \left[\boldsymbol{\chi}(\mathbf{x}) \otimes \nabla \right] + \boldsymbol{\tau}(\mathbf{x}) \right\} \nabla$

 transformation into Fourier space

$$\mathbf{0} = \frac{1}{(2\pi)^3} \int e^{i \,\mathbf{k} \cdot \mathbf{x}} \left\{ \mathbb{A} \left[\boldsymbol{\chi}(\mathbf{k}) \otimes i \,\mathbf{k} \right] + \boldsymbol{\tau}(\mathbf{k}) \right\} i \,\mathbf{k} \,\mathrm{d}\mathbf{k}$$
$$= \mathcal{F}^{-1} \left(\left\{ \mathbb{A} \left[\boldsymbol{\chi}(\mathbf{k}) \otimes i \,\mathbf{k} \right] + \boldsymbol{\tau}(\mathbf{k}) \right\} i \,\mathbf{k} \right)$$
$$\mathbf{0} = \left\{ \mathbb{A} \left[\boldsymbol{\chi}(\mathbf{k}) \otimes i \,\mathbf{k} \right] + \boldsymbol{\tau}(\mathbf{k}) \right\} i \,\mathbf{k}$$

• equilibrium fulfilled if

static equilibrium

 equilibrium condition

$$\mathbf{0} = \left\{ \mathbb{A}\left[oldsymbol{\chi}(\mathbf{k}) \otimes i \, \mathbf{k}
ight] + oldsymbol{ au}(\mathbf{k})
ight\} i \, \mathbf{k}$$

• equivalent to

$$\mathbb{A} \left[\boldsymbol{\chi}(\mathbf{k}) \otimes \mathbf{k} \right] \mathbf{k} = \boldsymbol{\tau}(\mathbf{k}) \, i \, \mathbf{k}$$
$$\mathbf{A}(\mathbf{k}) \, \boldsymbol{\chi}(\mathbf{k}) = \boldsymbol{\tau}(\mathbf{k}) \, i \, \mathbf{k} \quad \text{for all} \quad \mathbf{k} \neq \mathbf{0}$$
$$\mathbf{A}(\mathbf{k}) \, \mathbf{a} = \mathbb{A} \left[\mathbf{a} \otimes \mathbf{k} \right] \mathbf{k}$$

• "acoustic tensor"

equilibrated deformation map

$$\mathbf{A}(\mathbf{k}) \, \boldsymbol{\chi}(\mathbf{k}) = \boldsymbol{\tau}(\mathbf{k}) \, i \, \mathbf{k} \quad \text{for all} \quad \mathbf{k} \neq \mathbf{0}$$

$$\boldsymbol{\chi}(\mathbf{k}) = \begin{cases} \mathbf{A}(\mathbf{k})^{-1} \boldsymbol{\tau}(\mathbf{k}) \, i \, \mathbf{k} & \text{if } \mathbf{k} \neq \mathbf{0} \\ \boldsymbol{\chi}(\mathbf{0}) & \text{if } \mathbf{k} = \mathbf{0} \end{cases}$$

equilibrated deformation gradient

$$oldsymbol{\chi}(\mathbf{k}) = egin{cases} \mathbf{A}(\mathbf{k})^{-1} oldsymbol{ au}(\mathbf{k}) \, i \, \mathbf{k} & ext{if } \mathbf{k}
eq \mathbf{0} \ \mathbf{\chi}(\mathbf{0}) & ext{if } \mathbf{k} = \mathbf{0} \end{cases}$$

$$\begin{aligned} \mathbf{F}(\mathbf{k}) &= \begin{cases} -\mathbf{A}(\mathbf{k})^{-1} \boldsymbol{\tau}(\mathbf{k}) \, (\mathbf{k} \otimes \mathbf{k}) \\ \mathbf{F}(\mathbf{0}) \\ &= \begin{cases} -\Gamma(\mathbf{k}) \, \boldsymbol{\tau}(\mathbf{k}) & \text{if } \mathbf{k} \neq \mathbf{0} \\ \overline{\mathbf{F}} & \text{if } \mathbf{k} = \mathbf{0} \end{cases} \end{aligned}$$

iterative algorithm

 $oldsymbol{ au} = \mathbf{P} - \mathbb{A}\mathbf{F}$ $\mathbf{F}(\mathbf{k}) = egin{cases} -\mathbb{\Gamma}(\mathbf{k})\,oldsymbol{ au}(\mathbf{k}) & ext{if } \mathbf{k}
eq \mathbf{0} \ \overline{\mathbf{F}} & ext{if } \mathbf{k} = \mathbf{0} \end{cases}$

$$\begin{split} \widetilde{\mathbf{F}}(\mathbf{x}) &= -\mathbb{\Gamma}(\mathbf{x}) * \left[\mathbf{P}(\mathbf{F}(\mathbf{x})) - \mathbb{A}\mathbf{F}(\mathbf{x}) \right] \\ &= -\mathbb{\Gamma}(\mathbf{x}) * \mathbf{P}(\mathbf{F}(\mathbf{x})) + \underbrace{\mathbb{\Gamma}(\mathbf{x}) * \left[\mathbb{A}\mathbf{F}(\mathbf{x})\right]}_{\widetilde{\mathbf{F}}(\mathbf{x})} \\ &= -\mathbb{\Gamma}(\mathbf{x}) * \mathbf{P}(\mathbf{F}(\mathbf{x})) + \underbrace{\widetilde{\mathbf{F}}(\mathbf{x})}_{\widetilde{\mathbf{F}}(\mathbf{x})} \end{split}$$

iterative algorithm

 $\widetilde{\mathbf{F}}(\mathbf{x}) = -\mathbb{F}(\mathbf{x}) * \mathbf{P}(\mathbf{F}(\mathbf{x})) + \widetilde{\mathbf{F}}(\mathbf{x})$ • fix-point iteration

$$\{\mathbf{F}(\mathbf{x})\}_{n+1} = \{\mathbf{F}(\mathbf{x})\}_n - \mathcal{F}^{-1} \left(\begin{cases} \mathbb{F}(\mathbf{k}) \{\mathbf{P}(\mathbf{k})\}_n & \text{if } \mathbf{k} \neq \mathbf{0} \\ \{\overline{\mathbf{F}}\}_n - \{\mathbf{F}_{BC}\}_{n+1} & \text{if } \mathbf{k} = \mathbf{0} \end{cases} \right)$$

boundary
condition
$$\{\mathbf{F}_{BC}\}_{n+1} = \{\overline{\mathbf{F}}\}_0 + \dot{\mathbf{F}}_{BC} \Delta t - \left\{ \overline{\frac{\partial \mathbf{F}}{\partial \mathbf{P}}} \right\}_n \left(\{\overline{\mathbf{P}}\}_n - \mathbf{P}_{BC}\right)$$

naition

exemplary results

comparison between FEM and spectral method

load case

exemplary results

comparison between FEM and spectral method

 mesh convergence of volume-average response

spectral method

exemplary results

comparison between FEM and spectral method

spectral method

exemplary results

comparison between FEM and spectral method

exemplary results

comparison between FEM and spectral method

exemplary results

International Journal of Plasticity 27 (2011) 707-727

Modeling the viscoplastic micromechanical response of two-phase materials using Fast Fourier Transforms

S.-B. Lee^{a,*}, R.A. Lebensohn^b, A.D. Rollett^a

^a Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

^b Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87845, USA

spectral method

exemplary results

 percolating vs granular matrix

• stress

• strain rate

exemplary results

• different contiguity

• stress

• strain rate

exemplary results

limitations

solution

- periodic structure
- high property contrast
- strongly heterogeneous deformation

- low-stiffness gaps
- alternative formulations
- regridding

homework

- finalize lab assignments of April 11 and 18
- due date April 27 (Sunday)

file transfer

mesh convergence (lab April 11)

- make a directory at /egr/research/CMM/MSE991/ SpectralMeshConvergence/\$USER
- сору
 - *.geom files of 20 and 40 grain structure
 - material.config
 - loadcase file
 - *.spectralOut binary result file

file transfer

kinematic variability in 3D and 2D (lab April 18)

- make a directory at /egr/research/CMM/MSE991/ VariabilityColumnarEquiaxed/\$USER
- сору
 - *.geom files of equiaxed and sliced structures
 - material.config
 - loadcase file
 - *.spectralOut files of all five simulations

convergence of basic scheme

linear elastic media

 spectral radius of "Gamma" operator

$$R = \frac{\max \mathbb{C}(\mathbf{x}) - \min \mathbb{C}(\mathbf{x})}{\max \mathbb{C}(\mathbf{x}) + \min \mathbb{C}(\mathbf{x})}$$

- distance to fix point $\epsilon \propto R^N$
- rate of convergence proportional to contrast factor

Michel, J. C., Moulinec, H., & Suquet, P. (2001). A computational scheme for linear and nonlinear composites with arbitrary phase contrast. Int. J. Numer. Meth. Engng., 52(12), 139–160.

 $\mathbb{C}(\mathbf{x})$

MICHIGAN STATE

dual-phase steel example

microstructure

dual-phase steel example

basic spectral scheme

body force

compatibility

MICHIGAN STATE

dual-phase steel example

Augmented Lagrangian spectral scheme

body force

compatibility

MICHIGAN STATE

arbitrary rate-dependent constitutive law

direct variational formulation

$$\min_{\mathbf{x}} \mathcal{W} \implies \operatorname{Div} \mathbf{P}(\mathbf{x}) = \mathcal{F}^{-1} \left[\mathbf{P}(\mathbf{k}) \, i \, \mathbf{k} \right] = \mathbf{0}$$

$$\widehat{\mathscr{F}} \left[\chi(\mathbf{k}) \right] := \mathbf{P}(\mathbf{k}) \, i \, \mathbf{k} = \mathbf{0}$$

$$\swarrow$$
residual
body force
field

direct variational formulation

try to find that deformation map which causes the same body force field in a linear homogeneous reference medium

 $\widehat{\mathscr{F}}[\boldsymbol{\chi}(\mathbf{k})] := \mathbf{P}(\mathbf{k}) \, i \, \mathbf{k} = \mathbf{0}$

direct variational formulation

direct variational formulation

solution corresponds to saddle point

$$\begin{aligned} \frac{\delta \mathcal{L}}{\delta \mathbf{F}(\mathbf{x})} &= \mathbf{P}(\mathbf{x}) - \mathbf{F}(\mathbf{x}) \mathbf{\Lambda}(\mathbf{x}) + \mathbb{A} \Big\{ \mathbf{F}(\mathbf{x}) - \operatorname{Grad} \boldsymbol{\chi}(\mathbf{x}) \Big\} = \mathbf{0}, \\ \frac{\delta \mathcal{L}}{\delta \boldsymbol{\chi}(\mathbf{x})} &= \operatorname{Div} \left[\mathbf{F}(\mathbf{x}) \mathbf{\Lambda}(\mathbf{x}) - \mathbb{A} \Big\{ \mathbf{F}(\mathbf{x}) - \operatorname{Grad} \boldsymbol{\chi}(\mathbf{x}) \Big\} \right] = \mathbf{0}, \\ \frac{\delta \mathcal{L}}{\delta \mathbf{\Lambda}(\mathbf{x})} &= \operatorname{Grad} \boldsymbol{\chi}(\mathbf{x}) - \mathbf{F}(\mathbf{x}) = \mathbf{0}. \end{aligned}$$

saddle point condition in Fourier space

$$egin{aligned} \mathbf{P}(\mathbf{k}) &- oldsymbol{\Lambda}_{\mathrm{R}}(\mathbf{k}) + \mathbb{A}\Big\{\mathbf{F}(\mathbf{k}) - oldsymbol{\chi}(\mathbf{k}) \otimes i\,\mathbf{k}\Big\} &= oldsymbol{0} \ \mathbf{\chi}(\mathbf{k}) &= \mathbf{A}(\mathbf{k})^{-1}\Big\{\mathbb{A}\mathbf{F}(\mathbf{k}) - oldsymbol{\Lambda}_{\mathrm{R}}(\mathbf{k})\Big\}\,i\,\mathbf{k} \end{aligned}$$

$$\chi(\mathbf{k}) \otimes i\,\mathbf{k} - \mathbf{F}(\mathbf{k}) = \mathbf{0}$$

saddle point

$$\begin{split} \widehat{\mathscr{F}}_{\mathrm{mixed}}\left[\mathbf{F}(\mathbf{k}), \mathbf{\Lambda}(\mathbf{k})\right] &:= \begin{cases} \mathbf{P}(\mathbf{k}) - \mathbf{\Lambda}_{\mathrm{R}}(\mathbf{k}) + \mathbb{A}\Big\{\mathbf{F}(\mathbf{k}) - \mathbb{\Gamma}(\mathbf{k})\Big\{\mathbb{A}\mathbf{F}(\mathbf{k}) - \mathbf{\Lambda}_{\mathrm{R}}(\mathbf{k})\Big\}\Big\}\\ \mathbf{F}(\mathbf{k}) - \mathbb{\Gamma}(\mathbf{k})\Big\{\mathbb{A}\mathbf{F}(\mathbf{k}) - \mathbf{\Lambda}_{\mathrm{R}}(\mathbf{k})\Big\} \end{cases} \\ &= \mathbf{0} \end{split}$$

discretization

- regular spatial grid
- associated Fourier grid

root finding algorithm

- non-linear Richardson
- non-linear GMRES
- inexact Newton-GMRES

elastic inclusion problem

- isotropic elasticity
- 2048 x 2048
- uniaxial tension

http://www.mathpages.com/home/kmath330/kmath330.htm