MT 250 Metallurgical Concepts

Physical Metallurgy

Mid-term Test 1 (12.9.2003)

Answer all the questions in one hour. Each question carries 2 points.

- 1. List all the members of the (111) family of planes in
 - (a) a simple orthorhombic crystal.
 - (b) a *bcc* crystal.
- 2. In a hexagonal crystal, sketch two members of the $(11\overline{2}1)$ family of planes.
- 3. Calculate the density of atoms (number of atoms per unit area) on the
 - (a) (111) planes in an fcc crystal.
 - (b) (110) planes in a bcc crystal.
- 4. Calculate the equilibrium number of vacancies per cubic metre of copper at 1000 °C. The free energy of formation of a vacancy is 0.9 eV; the atomic weight and density (at 1000 °C) for copper are 63.5 g/mol and 8.4 g/cm³, respectively.
- 5. The energy necessary to generate a dislocation is proportional to b^2 , where b is the magnitude of the Burgers vector, \mathbf{b} . This means that the most stable (lowest energy) dislocations have the smallest Burgers vectors. For the fcc structure, calculate the energies of dislocations whose Burgers vectors are $\mathbf{b}_1 = (a/2)$ [110] and $\mathbf{b}_2 = a$ [100].