MT 250 Metallurgical Concepts

Physical Metallurgy

Home Assignment 2 (Due 15.9.2003)

- 1. Calculate the packing fraction in the simple cubic, *bcc* and *fcc* structures, by assuming that the atoms occupying the lattice sites are spherical in shape.
- 2. Sketch the CsCl, NaCl and diamond cubic structures. For each, identify the Bravais lattice.
- 3. Calculate the size of the largest atom which can fit into the triangular, tetrahedral and octahedral voids in a *fcc* structure. For each void type, calculate the packing factor when all the voids of that type are occupied.
- 4. In a table, list the planes which give rise to the first 10 peaks in a powder diffraction pattern for each of the following structures:
 - a. fcc
 - b. bcc
 - c. simple cubic

Each table should contain at least the following information for each peak p: (i) $(hkl)_p$, (ii) d_p and (iii) d_p^2/d_1^2 .

- 5. Calculate the diffraction angle (2θ) for the first four peaks of fcc Al (a = 0.404 nm) using Cu- K_{α} radiation of wavelength $\lambda = 0.1542 \text{ nm}$.
- 6. Calculate the c/a ratio for an ideal hcp crystal. What would be the (hkil) indices for the three lowest diffraction angle peaks for this crystal?
- 7. For gold, ΔH_v , the vacancy formation energy is about 1 eV per vacancy. If the vacancy concentration at the melting point of gold is about 10^{-4} , determine the temperature at which the vacancy concentration will be (a) 5×10^{-5} and (b) 10^{-8} .